64,081 research outputs found

    Gauge Symmetry, T-Duality and Doubled Geometry

    Get PDF
    String compactifications with T-duality twists are revisited and the gauge algebra of the dimensionally reduced theories calculated. These reductions can be viewed as string theory on T-fold backgrounds, and can be formulated in a `doubled space' in which each circle is supplemented by a T-dual circle to construct a geometry which is a doubled torus bundle over a circle. We discuss a conjectured extension to include T-duality on the base circle, and propose the introduction of a dual base coordinate, to give a doubled space which is locally the group manifold of the gauge group. Special cases include those in which the doubled group is a Drinfel'd double. This gives a framework to discuss backgrounds that are not even locally geometric.Comment: 16 page

    Mechanism for the failure of the Edwards hypothesis in the SK spin glass

    Full text link
    The dynamics of the SK model at T=0 starting from random spin configurations is considered. The metastable states reached by such dynamics are atypical of such states as a whole, in that the probability density of site energies, p(λ)p(\lambda), is small at λ=0\lambda=0. Since virtually all metastable states have a much larger p(0)p(0), this behavior demonstrates a qualitative failure of the Edwards hypothesis. We look for its origins by modelling the changes in the site energies during the dynamics as a Markov process. We show how the small p(0)p(0) arises from features of the Markov process that have a clear physical basis in the spin-glass, and hence explain the failure of the Edwards hypothesis.Comment: 5 pages, new title, modified text, additional reference

    Near-Term Options for a Nuclear Thermal Propulsion Flight Demonstrator

    Get PDF
    The Appropriations Bill passed by the US Congress in February 2019 instructed NASA to direct not less than 100,000,000forthedevelopmentofnuclearthermalpropulsion,ofwhichnotlessthan100,000,000 for the development of nuclear thermal propulsion, of which not less than 70,000,000 shall be for the design of a flight demonstration by 2024 for which a multi-year plan is required by both the House and the Senate within 180 days of enactment of this agreement." As part of NASAs response to this direction, the Advanced Concepts Office (ACO) at the Marshall Space Flight Center (MSFC) was tasked with leading a study to develop a nuclear thermal propulsion (NTP) flight demonstration (FD) concept and evaluate its feasibility with respect to the near-term schedule goal. During formulation for the NTP FD study, two perspectives emerged with regards to FD concept design. The first seeks to strictly observe the immediate near-term schedule goal, embracing a completely off-the-shelf, high-TRL approach to subsystem design and component selection. The downside to this approach is that the propulsion performance to be expected from such a design is significantly lower than what NTP promises for operational systems, and the value of the flight demo is potentially reduced due to a lack of traceability. The second approach advocates for an FD concept that shows increased traceability to the projected designs of operational systems, providing risk reduction for future NTP-enabled missions. This option comes at the cost of schedule and development risks, as it requires some new investments in nuclear reactor fuels and design. In order to understand the implications and differences between these two approaches, the ACO team elected to perform a concept design of each type, labeling the immediate near-term concept Flight Demo 1 (FD1), and the higher traceability concept Flight Demo 2 (FD2). This paper will present a summary of the mission profiles and system designs for both FD1 and FD2, identifying key drivers and challenges for each design

    Planned Behavior Typologies of Agricultural Education Teacher Educators Regarding Service Learning as a Method of Instruction: A National Mixed Methods Study

    Full text link
    This study sought to understand the service-learning beliefs and intentions of agricultural education teacher educators. We collected quantitative data through a web-based survey instrument and course syllabi. Variables yielding statistically significant relationships were analyzed using cluster analysis, which produced three unique clusters operationalized as typologies representing the planned behaviors of teacher educators regarding service learning. For example, the Optimistically Unaware expressed positive beliefs about the method, but did not understand how to integrate service learning in their teaching methods courses. Meanwhile, the Policy-Focused Decision Makers used established education policy as anchors when navigating decisions, such as whether to feature service learning in their courses. Service-Learning Implementers espoused strong beliefs about the method’s potential while also emphasizing how it could be used to enrich the preparation of agriculture teachers. Results point to the potential service learning holds if integrated as a complement to teacher preparation rather than an addition to current practice

    Smile4life:The oral health of homeless people across Scotland

    Get PDF

    Women\u27s risk perception and sexual victimization: A review of the literature

    Get PDF
    This article reviews empirical and theoretical studies that examined the relationship between risk perception and sexual victimization in women. Studies examining women\u27s general perceptions of risk for sexual assault as well as their ability to identify and respond to threat in specific situations are reviewed. Theoretical discussions of the optimistic bias and cognitive–ecological models of risk recognition are discussed in order to account for findings in the literature. Implications for interventions with women as well as recommendations for future research are provided

    Statistical Mechanics of Vibration-Induced Compaction of Powders

    Full text link
    We propose a theory which describes the density relaxation of loosely packed, cohesionless granular material under mechanical tapping. Using the compactivity concept we develope a formalism of statistical mechanics which allows us to calculate the density of a powder as a function of time and compactivity. A simple fluctuation-dissipation relation which relates compactivity to the amplitude and frequency of a tapping is proposed. Experimental data of E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of initially deposited in a fluffy state powder evolves under carefully controlled tapping towards a random close packing (RCP) density. Ramping the vibration amplitude repeatedly up and back down again reveals the existence of reversible and irreversible branches in the response. In the framework of our approach the reversible branch (along which the RCP density is obtained) corresponds to the steady state solution of the Fokker-Planck equation whereas the irreversible one is represented by a superposition of "excited states" eigenfunctions. These two regimes of response are analyzed theoretically and a qualitative explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex

    Outer planets probe testing

    Get PDF
    An atmospheric entry Probe is being developed by NASA Ames Research Center (ARC) to conduct in situ scientific investigations of the outer planets' atmospheres. A full scale engineering model of an MDAC-E Probe configuration, was fabricated by NASA ARC. Proof-of-concept test validation of the structural and thermal design is being obtained at NASA ARC. The model was successfully tested for shock and dynamic loading and is currently in thermal vacuum testing
    • 

    corecore